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Abstract

This paper is concerned with the elastostatic behavior of heterogeneous beams with a cross-section and elastic
moduli varying periodically along the beam axis. By using the two-scale asymptotic expansion method, the interior
solution is formally derived up to an arbitrary desired order. In particular, this method is shown to constitute a sys-
tematic way of improving Bernoulli’s theory by including higher-order terms, without any assumption, in contrast to
Timoshenko’s theory or other refined beam models. Moreover, the incompatibility between the interior asymptotic
expansions and the real boundary conditions is emphasized, and the necessity of a specific treatment of edge effects is
thus underlined. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Heterogeneous structures consisting of elements arranged periodically are widely used in civil engi-
neering and industry. Using standard numerical methods (such as finite elements) to predict the overall
behavior of these structures leads to heavy computations. However, when the size of the heterogeneity is
small compared with the macroscopic dimension of the structure, the latter can be regarded as a homo-
geneous continuous medium. Thus, the method of homogenization can be applied.

The study presented here concerns the homogenization of structures having one large global dimension
in comparison with the others, and a periodic heterogeneity only in this direction. One can for example
think about repetitive lattice structures or any other periodic structure displaying overall beamlike be-
havior. Such structures possess two small parameters: e, which measures the ratio of the width of the cross-
section to the total length L of the structure, and ¢, which is the ratio of the length of the heterogeneity to
the length L.

The method of homogenization consists in letting these two small parameters tend to zero starting from
the three-dimensional (3D) elasticity problem. Hence several methods exist, depending on the order in
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which one realizes these two limits. The commutativity of the limiting processes has been studied from a
theoretical point of view by Geymonat et al. (1987). The authors established that for a beam with a variable
cross-section (transversal heterogeneity), different one-dimensional (1D) homogenized models are obtained
when letting ¢ — 0 then ¢ — 0, or the inverse. More precisely, the use of convergence theorems leads in both
cases to a limit behavior corresponding to Bernoulli’s model, but associated with different effective stiff-
nesses. The method consisting in letting first e tend to zero and then ¢ amounts to study a Bernoulli’s beam
with rapidly varying properties (Cioranescu and Saint Jean Paulin, 1999; Miller, 1994). Following the other
method, we take the limit with respect to ¢ first (which corresponds to averaging the effect of cross-section
and material variations) and afterwards the limit with respect to ¢ (which consists in applying Bernoulli’s
theory to the resulting beam).

Another way of homogenization is to assume that the two small parameters simultaneously become
vanishingly small. It leads to apply the method of the asymptotic expansion with only one small parameter.
This approach has been initiated in Caillerie (1984) for periodic plates, and extended to the case of periodic
beams in Kolpakov (1991) and Kalamkarov and Kolpakov (1997). At the first order, this method leads to a
generalization of Euler-Bernoulli-Navier’s model. The way of obtaining this limit behavior is widely ex-
plained in Kolpakov (1991), where convergence results are also established.

Therefore, three methods are available to homogenize the structure, and the question of defining their
respective range of applicability naturally arises. When the limit processes are carried out successively, the
method is a priori valid only if the parameter tending first to zero is much smaller than the other one. On
the other hand, the method consisting in letting both parameters simultaneously tend to zero is a priori
appropriate if e and ¢ are of the same order of magnitude, i.e. if the basic cell is neither very long and thin,
nor very short and fat. However, the application of the latter method to different examples shows that its
domain of validity can be enlarged (Buannic and Cartraud, 1999). In that reference, a periodic lattice
structure is studied. The equivalent characteristics are identified from a classical study of a beam made of a
large number of basic cells, and compared to those obtained from the two homogenization methods:
method 1 (e — 0 then ¢ — 0) and method 2 (e ~ ¢ — 0). It turns out that the method 2 gives very accurate
results whatever the value of the ratio e/e, while the method 1 is valid if e < ¢. Similar results have been
obtained in the case of honeycomb plates (Bourgeois, 1997). This is in the same line as the conclusion
drawn in Lewiniski (1991b), in which the author claims that the only restrictions to the method 2 are e < 1
and ¢ < 1. The latter method will therefore be applied here.

The present paper aims at deriving the successive terms of the interior asymptotic expansions for pe-
riodic heterogeneous beams. As already mentioned, the first order terms correspond to Bernoulli’s model.
Consequently, the latter give a good approximation of the 3D behavior only if ¢ < 1 or if the applied
loading does not involve any transverse shearing force within the structure. But in practice, ¢ is never in-
finitely small, and it may be necessary to characterize the higher-order terms of the expansions, which is the
purpose of this paper. The expression of these terms is well known in the case of homogeneous isotropic
elastic beams from Cimetiere et al. (1988) in the nonlinear case, Rigolot (1976), Fan and Widera (1990) or
Trabucho and Viano (1996) in the linear case for an arbitrary cross-section, and Duva and Simmonds
(1991) for a narrow rectangular cross-section treated in plane stress analysis. The case of transversely
nonhomogeneous isotropic rods is also treated in Trabucho and Viano (1996). We extend here these works
to a periodic heterogeneous beam, with arbitrary variable cross-section, and within the framework of
anisotropic elasticity.

Section 2 contains the formulation of the initial 3D elasticity problem and the definition of the notations.
In Section 3, the asymptotic expansion method will be presented. It leads to a sequence of microscopic
cellular problems (Section 4) as well as successive macroscopic 1D models (Section 5).

In this part, most of the attention is focused on the outer expansion of the beam equations.
The treatment of end effects and the derivation of the boundary conditions will be given in Part II of this

paper.
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Throughout this paper, Latin indices take values in the set {1, 2,3} while Greek indices in {1,2}. We also
use the Einstein summation convention on repeated indices. Moreover, the partial derivatives 0/0z;, 8% /323
and 0°/0z3 will be denoted 03, 033 and Os33.

2. The initial three-dimensional problem

The 3D slender structure Q° considered herein is formed by periodic repetition of the periodicity cell Y*
over the e; direction (see Fig. 1).

Any kind of heterogeneity, geometrical or material, can be studied, and the structure is not assumed to
present any particular symmetry (material or geometrical) with respect to the middle axis x; = x; = 0.

The periodicity cell Y* is defined by (see Fig. 2):

[ [
yE — {Z‘ = () /11 (x2,x3) < x1p < I7, (x2,x3); 15 (x1,3) <xa < 15, (x1,X3); —53 <x3< 23} (1)

where the functions /2, are assumed to be periodic in x3 with period /5. Let Y* be the solid part of the cell
with boundary 0Y* (see Fig. 2) such that 0Y* = 0¥’ U 0Y; U 0Y’ with 0Y’ the plane surfaces perpendicular
to the e3 direction, 0Y; the lateral outer boundary of the cell and 0Y; its inner boundary (cell holes).
The elastic moduli of the beam, a;;,(x), are periodic in x; with period /3, and satisfy the following

classical relations:

(i) a;;kz(l‘) = ayy (x) = az/i/(§)7 xe

(i) 3 m >0 such that Vt/t; =1, mryty < aj,(X)t,T (2)

(iii) 3 M such that M = supaj,(x), x€

The boundary of the domain Q° is defined by 0Q° = S; U S; U, UT?, with S and S} the two end sec-
tions of the beam and I';, I'? obtained from the periodic repetition of 0Y;, Y’ respectively (see Fig. 1).

Fig. 2. Periodicity cell Y*.
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The beam is considered to be under body forces f* and tractions g on the outer boundary I'; (see Fig. 2).
The holes boundary I is supposed to be free of traction. The left end S; is clamped and stress data
5;(x1,x2) are prescribed on the right end S;.

The static problem P° of linear elasticity consists in finding the fields ¢°, e’ and u’, such that:

div, 0° = —f°
o' = a'(x) : e'(u’)
e’(u’) = grad; (u’)

& & &
o°-n=g' on ry (3)
¢-n=0 onlr;
o’ - e3 = 63i(x1,x2) . gi on Sz
uw=0 onsj

where grad] and div, correspond respectively to the symmetric strain and divergence operators, with respect
to the spatial coordinate x. The vectors n in Eq. (3) (third and fourth equations) and e; in Eq. (3) (fifth
equation) denote the outer normal of the correspondlng boundary. The superscript ¢ in the formulation of
P? indicates that the solutions depend on the values of the two small parameters of the structure, ¢ and &,
which are assumed to be equal, as explained in Section 1.

A unique solution ¢°, €°, u* exists for the problem (3) under conditions (2) and assuming that the
functions f‘g * and 0% (xl,xz) are sufficiently smooth, and the boundary 0Q° regular.

3. The asymptotic expansion method

The first step of the method consists in defining a problem equivalent to the problem (3), but now posed
on a fixed domain which does not depend on the small parameter «.

To this end, we apply the technique of Caillerie (1984) and Kolpakov (1991), and so introduce the
following changes of variables, to take into account successively the slenderness of the beam cross-section
and the smallness of the beam heterogeneity:

Xy X2
(21722723) = ;7;7-)(3 )

(4)

Z3 1 .
(yl,yz,ys) = (21722,;) = E(X17x27x3) SImee e = &

Consequently, z; represents the slow or large scale or macroscopic variable of the problem and y= x/e the
fast or small scale or microscopic one.

According to this change of variable, we associate the new strain and divergence operators in the fol-
lowing manner:

grad}. = grad’ . + !grad;.
divy. = div.,. +Ldiv,. (5)

where grad;, and div., correspond to partial differentiations with respect to the only variable z;, while grad;
and divy are the differential operators with regard to the three microscopic variables y;.

As a second step, it is necessary to presuppose the order of magnitude of the loadings which are applied
to the structure. Especially, we set:
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f;(xlaxZ;XS) =g 'f3(23,)/1a)/2) gﬁ(xl,xz,xs) = 3(23,371,)/2)
Filer,xa,x3) = & - folz3,01,00)  gh(x1,x2,3x3) = & - gu(23,1,)2) (6)

055 (x1,x2) = e o, »m) Gos(X1,X2) = & Gy, )n)

8
8

Furthermore, the elasticity moduli aj;, are assumed to be independent of ¢, so we have:

a‘(x) = a(y) (7)

~

Remark 3.1. The homogenized limit 1D model depend on the orders of magnitude of the applied loadings
with respect to ¢, for example Karwowski (1990) for the theory of asymptotic modeling of rods, or Caillerie
(1980) and Millet (1997) for the case of plates. The assumptions (6) and (7) are usually made in order
that the limit behavior (¢ — 0) of the 3D slender structure is that of a beam (Trabucho and Viano, 1996;
Cimetiere et al., 1988).

Third, following a standard technique, the solution u® of the (P*) problem is sought in the form used in
Kolpakov (1991):

u(X) = ity (z3)e, + eu' (z3,y) + &'u(z3,y) + - (8)

where every function u*(z3, ;) is periodic in the variable y; with period /3 (/3 = /5/¢), which will be denoted
y-periodic in the following.

Consequently, using Eq. (5) (first equation) and the constitutive relations, the strains and stresses ex-
pansions are given by:

e(x) = e0(23,Z) + ge! (23,27) + £2e2(23,)N’) 4.
)

o' (x) = 6"(z3,y) + ¢6' (z3,y) + £6°(z3,y) + -

~ ~ ~

Remark 3.2. The form of the first term of the expansion (8), which is composed of only the deflections
12(z3), is not an assumption, in the sense that applying the asymptotic method with the relations (6) leads to
that expression of u* (Trabucho and Viano, 1996). A similar result has been established in the case of
periodic plates (Caillerie, 1984), where the first term of the expansion is found to be reduced to the de-
flection of the middle plane (i.e. u3(z,)es) if appropriate magnitude order assumptions are made on the

applied loadings.

Because the beam asymptotic model obtained under assumptions (6) satisfies the relation (8), it is usual
to scale the displacement components (Trabucho and Viano, 1996; Cioranescu and Saint Jean Paulin,
1999). For example, in Trabucho and Viano (1996), the authors associate with the displacement field u*(x)
the scaled functions u(z3, y)(e) through the following scalings:

~

u(x) = & 'uy(23,y) (&)

u(X) = us(z3,y) (&)

(10)

and these scaled functions are then assumed to have the asymptotic expansion:

ui(z3,¥)(e) = ) (z3,y) + e} (z3,y) + €17 (z3,y) + - -

The justification of the scalings (10) is purely mathematical and is related to convergence results of the
asymptotic method as ¢ — 0. However, this convergence aspect will not be treated at all in the present
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paper. Thus, such scalings will not be used here, since all the results presented here remain formal, i.e.
without any convergence study.

When introducing the relations (4)—(8) into the P* problem (3) and equating the terms of a same order
with respect to ¢, we replace the problem P* by a family of problems. The fields involved in the latter are
functions of the two kinds of variables y; and z;, but no longer depend on the small parameter ¢. So, when
treating the z3- and y;-coordinates as independent, and considering the fields function of the only variable z3
as given data, we can regard each of these problems as a microscopic problem, which is posed on the scaled
period Y. In that sense, these successive problems are commonly named the cellular periodic (or basic cell)
problems, and will be denoted herein P%, where the superscript k stands for the order of the current
problem with respect to ¢. As it will be seen in Section 4, the solution of these cellular problems enables us
to determine the periodic parts of the expansions (8) and (9). Then, expressing the existence conditions of
solutions for the P*, problems, we obtain the formulation of homogenized 1D-macroscopic problems,
denoted by P!, the solution of which gives the macroscopic (i.e. nonperiodic) parts of the fields (8) and (9).

cell
The formulation and solution of the P problems are treated in Section 5.

4. The set of cellular problems P*

cell

From the change of variable (4) and of operators (5), and inserting the asymptotic expansion (8) for the
displacement field u® into the initial P* problem, one can derive an infinite set of cellular P, problems, with
k starting from —1.

4.1. General formulation of the kth cellular problem P,

For an arbitrary power k of the small parameter ¢, the P, problem is posed on the fixed period Y defined
as:

/ /
Y = {Z = 00)/L-0n,33) < < L (2, 33); Lo, 33) <y < Ly (L »3); —53 <y < 53}

with 1. (v, 3) = L, (eyp, ev3) /¢ and I3 = [5/e,

and with boundary 0Y* such that 0Y* = 0Y, U 0Y, U 0Y.. 0Y,, 0Y;, 0Y, denote the scaled lateral boundary
surface obtained from 0Y?, 0Y, 0Y? respectively.

The P, problem consists in finding the fields 6**!, e

k+1 k+2

and u*** satisfying the following equations:

div, "' = —f* — div,, 6"

k+1 k+1

—ay):e

eftl — grad; (gkﬁ) + gradz (Ekﬂ)

g

otl.n= gk+1 on aYb (12)

¢“*l.n=0 on0Y,

with k > —1 and where the negative powers of ¢* and e* vanish. f‘ and g* correspond respectively to the

body and surface densities of forces which occur at the order &f. We recall that these forces are assumed to
obey the relations (6), so that f¥ = gi*!' =0 if k # 1 and that f* = g&*! = 0 if k # 2. Finally, the periodic
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boundary conditions (12) (sixth equation) result from the structure periodicity, see Eq. (8), and due to the
opposite values of ¢**! - n on opposite sides of 0Y, where n = *e;.

Remark 4.1. When solving the cellular problem Pk at order k, we consider that the preceding Pt;! problem
has already been solved and thus that the fields ¢* and u**' have been determined. Consequently, the
parameters div., 6* and grad’, (u**1) constitute macroscopic given fields for the current problem P%,: the first

one can be regarded as a fictive volume force and the second as an initial strain state in the period Y.

Let us introduce W(Y) = {y € [H'(Y)],ys-periodic}. The P, problem is equivalent to: find the dis-
placement field u**? belonging to W (Y) such that

Vlk e w(y), / o grad;(lk)dY = /

y*

(div, o'+ )y + [ gTopar (13)
19 or, ~ 14
where the stress field ¢**! is related to the displacement field u*** following Eq. (12) (second equation) and
where dY = dy; dy,dy;. According to the variational form Eq. (13), it is easy to show that the P, problem
possesses a solution provided that the data div., 6*, Ek , g°*1 verify the following relation:

Vv € R, / (div., 0" + ") -!dY—i—/ gt vdlr=0 (14)
Y+ oy, ™
where R corresponds to the set of the y;-periodic rigid body motions for the period Y, and is given by:
R = {v(z0,y)/v = 6(z) - & + o@D - €2 — 12 -eil) (15)

Under the necessary condition (14), the solutions ¢**!, e*! and u*** (determined up to an element of R)
exist and can be linearly expressed with respect to these data. The compatibility condition (14) will enable
us to formulate the macroscopic problems, as we shall see in Section 5.

In the next sections, we give the solution of the cellular problems which leads to the determination of the
microscopic parts of the displacement field u* and consequently to a formal expression of the latter.

4.2. Solution of the cellular problem P},

The first cellular problem occurs for k = —1. Since we have assumed that no force f ~!or g’ is applied at
this order, it can be written as follows: -
divye” =0
o’ =a(y): e
e’ = grad;(u') + grad: (v°) (16)

6’ -n=0 ondY,UdY,

0% and u' y3-periodic

The only data of the problem are thus contained in the tensor grad; (u) and, according to the form of the
field u’, we have: ‘

grad’, (') = 0 3119(z3) (17)
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where 9;1)(z3) are the two macroscopic data of the P problem and where sym stands for the symmetric
part of the matrix.

The compatibility condition (14) is satisfied identically for the problem (16), ensuring thus the existence
of the solution. Furthermore, one can easily establish that this problem possesses a direct solution which is:

U = — - 03 (23) -3 and " =e"=0 (18)
In that sense, the two data 0;4%(z3) do not constitute effective data, since the associated solution corre-
sponds to a zero deformation state (Sanchez-Hubert and Sanchez-Palencia, 1992).

The displacement field given in Eq. (18) is obtained up to an element of R, so the complete solution of
the P problem has to be written:

u' = if(z3) &+ @' (@) e — @] =2, Bsit)(z:) - € = W (3, Y) (19)

4.3. Solution of the zeroth order cellular problem P,

Since ¢° = 0, the P, problem consists in finding the fields ', ' and u? which satisfy:

divye' =0
ol =a(y):e
e' = grad;(u’) + grad; (u') (20)

=0 ondY,Uodr.

i ) .
o5 and w® y3-periodic

As with the preceding problem, the compatibility condition (14) is satisfied identically for the problem (20).
According to the expression (19) of u' obtained at the preceding order, the data of the zeroth order cellular
problem can be written as follows:

0 0 1(3suy(z3) — 32030 (z3))
grad’, (u') = 0 5 (03i3(z3) + 103" (23)) (21)
sym (03it3(23) — ¥,03311)(23))

The two data 95i!l(z;) will provide a direct solution gzpm similar to expression (18). The four other data
which are contained in grad; (u'), namely 03ii}(z3), Os3it)(23), 390" (z3), correspond respectively to a mac-
roscopic extension, two macroscopic curvatures and a macroscopic torsion rotation. Due to the linearity of
the problem (20), the dlsplacement field u” can be expressed as a linear function of these four effective data.
Adding the direct solution u part prov1ded by the two other data 63u (z3) as well as the rigid motion, the
complete displacement field at the second order assumes the following form:

w =+ (y) - By (z) + 1 (y) - Oty (z3) + £ (y) - D30 () (22)

where Liz (23,y) =(z3) - &+ ¢ 2(z3)n - € — - e;] — v, - 0si1}(z3) - e5. For later consistency of notations,
we introduce the four- components vector 1(23,) and the 3 x 4 matrix x'(y) so that we have:

w =8 (z,y) + 7' (y) - €(z) (23)

with
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€'(z3) = {03} (23), 033l (23), s3iy (23), 030" (23) } (24)

2 (y) = [ (

~ ~

V2,2 @) 2 )] (25)

~ T~ ~ ~

In Eq. (24), the four effective data have been grouped in the vector g1(23), with the result that the latter
represents the first order macroscopic strain vector.

Remark 4.2. The problem (20) does not have an analytical form solution for the unknown %! (y) in general,
except in the case of homogeneous rods, see for example Trabucho and Viano (1996) for an isotropic
material.

In the same manner as the displacement field, the stress field ¢' solution of P2,
with regard to the data:

o’l = ’C]E(z) . 6312;(23) + TIC7(Z) . 633122(23) + ’C]T(Z) . 63@] (23) (26)

has a linear expression

with

1E __ 1E
T = a3z + a0y, 14

1c 1C

Tt = = Vallij3s + g0y, 1y (27)
7 _ T

T; = —ai3 + Naips + @ijenOy, Yp

which will be formally denoted as:

o' =1(y) €(=z) (28)

~

where t!(y) corresponds to the regrouping of the four elementary stress tensors t'£, 1, 7! so that:
oy = i (¥) - 033 (23) + Ty (y) - Onsiy (23) + Ty (y) - Onaiy (23) + Ty (y) - 0300 (23) = 1,6, m € [1,4]

~ ~

(29)
with
Tp =T Tp =T Ty =T T =1 (30)
4.4. Solution of the first order cellular problem P!,
It follows from Egs. (6), (22) and (26) that the P, problem comprises the following relations:
divyo® = —div., ' — 13 - ¢
o’ =al(y): e
e’ = grad;(v’) + grad; (u’)
- - 31
6’ -n=gse; ondY, (31)

6>-n=0 on Y.

} y;-periodic

S)

&I\J
&
=
o

141

with
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div., o' = (17 (y) - Ossit(23) + 153 (¥ (y) - 9sssity(z3) + 75 (¥) - 03300 (23)) - & (32)
and
0 0 3(0si7(z3) — 320:9°(23))
grad’ (u”) 0 3(0si3(z3) +110300%(23))
sym (03113(23) — ¥, 033y (23))
0 0 F(xE(y)0nith(z) + 71 (¥) Bsnstid(53) + 217 (y) 000! (23)) (33)
+ 0 %(XéE(Z) Oyt (z3) + 12 “(Z) D333l (z3) + XéT(Z) 033¢'(z3))

sym (A5 (y) Onitd (z3) + 17 (¥) Osssity(z3) + 237 () 0x300' (23))

This problem admits a solution up to an element of R if and only if the data div., ' (0 0,/3) and (0,0, g3)
satisfy the relation (14) From Eq. (32), div.,6' can be expressed as a function of a;e which is the first
gradient of the strains ¢ (z;) Thus, the compatibility conditions (14) lead to a relation between 6;e and f3
and g3, which enables us to express the fictive volume force div., ¢! in the form:

div., 6" = h; (0:6") + hy(f3) + s () (34)

where hy, hy, hyare linear functions. The latter expression is such that if in the problem (31) only the data
involving f5 and g3, i.e. the body forces hy(f3) +hs(g3) + f3e3 and tractions gse; on 0Y;, then a well- posed
problem is found. In the same way, the problems involving the other data, i.e. the body forces h, (63e ) and
the initial strain state gradj3 (u), are also well posed. A more complete treatment of that question will be
given later (in Section 5.1.5), once the compatibility relations of the problem (31) have been expressed. Let
us study now the form of the solutions u® and ¢? of the problem (14), which can be linearly expressed with
respect to the data, in the same manner as at the preceding orders.

Firstly, the solution of the well posed elementary problem corresponding to the prescribed data f3, g3
only is denoted by ll part- The other data of the problem come from Eq. (33) and h1(63e ) in Eq. (34). In
order to give the form of the solution with respect to these data, it must be notlced here that the first matrix
on the right side of Eq. (33) is identical to the data matrix (21) of the preceding P, problem, except that the
superscripts have increased by one. As a consequence, the set of these six data, namely 6;12 (z3), 033tk (z3),
030%(z3), leads to the same displacement solutions as those obtained by solving the P2, problem. Thus,
besides u part, the only new unknowns of the current problem are the solutions corresponding to the de-
rivatives of the first order macroscopic strains defined in Eq. (24). Consequently, the displacement field
solution of the PL; problem can be formally written as follows:

w =0z, y) + 1 () - €)1 (Y) - 08 () + Epar (23, Y) (35)
where
0(z3,y) = @ (23) - & + @ (z3)[v1 - € — 32 - @] — 3, - Bsiis () - €3, (36)

€ (z3) = {03113 (z3), 031t} (23), O3y (z3), 0300° (23) }, (37)
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2(y) = W), W, W), 2 ), (38)

2E(

03¢ (z3) = {0s301} (23), D330t (23), D333185 (23), D330 (23} (39)

In expression (35), the fields grouped in %*(y) are the solutions of the problem (31) with the data contained
in 63e (z3) as the only nonzero data: i.e. the body forces h1(63e ), no traction on 0Y,, and an initial strain
state which is restricted to the last matrix of Eq. (33). The vector é (23) stands for the second order
macroscopic strains. The fields x'(y) have already been defined in Section 4.3.

Remark 4.3. The field %> has been introduced in Trabucho and Viafio (1996), Duva and Simmonds (1991)
and Fan and Widera (1990) for beams with constant cross-section. In the homogeneous and isotropic case,
analytical solution is available for ¥*#, and for 2% for some cross-sections. For heterogeneous and periodic

beams, ¢** and y*” appear in KO]pNakOV (1995)7 See also some related work in the case of periodic plates in
Lewinski (1991a).

The stress field 6” solution of the P, problem can also be formally expressed as follows:

o — [TlE(y) 03013 (z3) + 7' ( ) - D33tk (z3) + 7! ( ) - 050%(z)] + [TZE(Z) Byl ()
+ 2 (Z) - O33aild(z3) + 1,-2T(Z) 0330 (23)] + fiart (23,2,) = Tl(z) ¢ 2(2,) + ¢ ( ). 6;e () 4 ‘éfmt o X)
(40)
with
lej = a1 + i, 13 an

The stress fields contained in the first brackets have been determined by solving the P, problem, while
those in the second brackets are four new elementary solutions of the P, problem, when the four data of
036'(z3) are prescribed. . I8 given by £ = a(y):grady (d ?art)-

cel

4.5. Generalization: formal expression of the outer displacement field

By now, we have gone far enough to see how to proceed the formal construction of the displacement
field u’.

Ingerting Eq. (35) and Eq. (40) in the equations of the P2, problem, it is not difficult to see that the
macroscopic data of this cellular problem will involve the third order macroscopic strains ¢ }(23), the first
gradient of the second order macroscoplc strains (i.e. 63e (z3)), plus the second gradient of the first order
macroscopic strains (i.e. 6;3e (z3)). Furthermore, the loadlngs fle, and sy have to be added to these data,
according to assumptions (6).

In a recursive manner, the number of data involved in a cellular problem P%; will increase, starting from
thel(k + 1)th order macroscopic strains g ™1(z3) until the kth gradient of the first order macroscopic strains,
%é'(z:).

Thus, assuming that the data of each cellular problem verify the compatibility condition (14), the as-
ymptotic expansion of the displacement field u* takes the form:
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u = il)(z)e, + ¢ L’l(z»z)} +é {tjz(zw +21'(y) ~s"<Z3>] +é {93(2372) +1(y) - €(z)
) 08 ) 4| 2y o () €6 + ) )
) 00! ) 4| 45T @)

The expression (42) is similar to the asymptotic expansion obtained in the case of 3D periodic media (see
relation (21) in Gambin and Kroner (1989)).
One can also express the asymptotic expansion of the stress field 6° under a similar recursive form. The
generalization of expression (40) leads also to the following expansion:
o' = e[t (y) - €' ()] + £ (y) - €(23) + T (y) - 036 (z3) + T + £ (Y) - €(=s)

+7 (N) 63e (23) +7 ( ) 6336 (23) + Tpart] + 84[' . ] (43)
Relation (42) (and consequently Eq. (43)) constitutes a formal expression of the solution field in the sense
that, by now, only the microscopic parts y'(y) have been determined by solving in series the cellular
problems. The macroscopic part of Eq. (42), characterized by the fields @' as well as their successive gra-
dients, has now to be found. The way of obtaining it will be explained in the Section 5.

Remark 4.4. As in the treatment of the PL; problem, it is necessary to take into account the compatrbrhty
conditions of the PX problem. Therefore, one has to solve PX; in a similar way as made in the case of PL,
(see Sections 4.4 and 5.1.5). In that way, the elementary problems corresponding to each data of Pk are

well posed.

5. The set of macroscopic homogenized problems P}

As already mentioned in Section 4.1, the equilibrium equations corresponding to the unknown dis-
placement fields o' are obtained from the compatibility condition (14). Expressing this condltlon for the
cellular problems P % and P! leads indeed to the formulation of the homogenized 1D problems P¥, . This
process will be applied in the next subsections: the way of deriving the equations of the first homogenized
problem, denoted by P!, will be developed in detail in Section 5.1. A generalization will then be outlined
in Section 5.2 in order to give the form of the general homogenized problem P¥ , with k corresponding to
an arbitrary power of e.

5.1. Formulation of the first homogenized problem P}

5.1.1. Equilibrium equations

Firstly, it must be noted that the compatibility condition (14) is satisfied identically for the first two
cellular problems (16) and (20). As a consequence, the first homogenized problem occurs at order £ = 1.

Let us first focus our attention on the derivation of the macroscopic equilibrium equations of the first
homogenized problem P! .

The P., cellular problem (31) admits a solution provided that the data div., ', (0,0, f3) and (0,0, g;)
satisfy the relation (14). In particular, if we choose as test functions v the four elementary functions of R:
U3(z3)es, Uy(z3)e, and (y1€; — »€1), condition (14) leads to the four followrng equations:
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i/ 6%3dY+/ f3dY+/ gdl'=0 (44)
0z3 Jy - Y Y,

0 1

6_23 . 06,dY =0 (45)
0

3 8% Gés *y20'%3)dY =0 (46)
Z3 y*

Furthermore, putting ¥ = y,e; in the variational formulation of the P.; problem, given by relation (13)
with £ = 1, we have: ~ ~

a 1
/Uide:/ {ya—aa”ﬂgfz} dY+/ yg3dl, a=1,2 (47)
v v 23 oY,

In the same manner, if we express the condition (14) for the P2, problem, choosing now the two test
functions o,(z3)e, with o = 1 or 2, we obtain:

i G?ﬁdy"_/fadY"‘/ g,dlN=0, oa=1,2 (48)
¥ 7

623 y*
Let us introduce the following notations:

N'(z) = (03), T;(z3) = (03)
M,(z3) = (= 30%),  M;i(z3) = (( = 0015 +103)) (49)

with (-) = (1/13) [,. dY and where /; stands for the scaled length of period Y (see Fig. (2)).

The beam stresses N'(z3), T2(z3), M} (z3) and M3 (z3) respectively correspond to the first order macro-
scopic axial force, the second order transverse shearing forces, the first order bending moments and the first
order twisting moment. They are simply the average of their local corresponding quantity over the period
length.

Remark 5.1. The definition of the bending moments according to Eq. (49) do not obey the classical con-
ventions used in strength of material. Following Eq. (49), M| (z3) and —M, (z3) are about the e;- and e;-axis

respectively, (see Fig. 3).

With notations (49), it becomes obvious that relations (44), and (46)—(48) can be written, respectively, as:

N! <f3>+<g;>l,yh N'+dN!

e e T e e e T 3 —
] €3

dzs

T"a <fa>+<gy >, AL Tt’a <Yofs>+< Va8 >y, N AT
NN N Y
L o
“ My M, v,
7"11 7;12 o o

Fig. 3. Element of the equivalent beam (all loads and stress resultants are shown in their positive directions).
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ON' + (f3) + (€3)oy, = 0

03T, + (fa) + (8)oy, =0, a=1,2

—T; — M, + (0f3) + (183)ey, =0, a=1,2
xM; =0

with (.)sy, = (1/15) fayh dr.

Note that the set of the Eqs. (50) corresponds to the classical equilibrium relations of a beam theory
problem and hence constitutes the local equations of the Pl problem. The Egs. (50) (first, second and
third equations) and beam stresses representation are illustrated Fig. 3, considering the equilibrium of a
beam element of length dz;.

Remark 5.2. It appears from Eq. (50) (third equation) that the first order bending moments M are not
related to the transverse shearing forces of the same order but to the second order ones 7. As a matter of
fact, the first order shearing resultants 7! are equal to zero, and thus Eq. (45) is identically satisfied. This
remarkable result can be easily established as follows: we first notice that 7! can be defined as:

I3-T) :/ ol,dY E/ o' :gradj(y)dY with ¢ = y,e3
Y* Y* ~ ~ ~

Green’s formula can then be applied, so that:

1
sori= [ dpmas— [ T yar (51)
or* -y

where 0Y* is constituted of the lateral boundaries 0Y, and 0Y, and of the left and right sides of the period.

The first integral in Eq. (51) vanishes by virtue of the ys;-periodicity of ¢! and y,, of the absence of
prescribed surface force at this order on the lateral outer boundary 0Y;, and of the stress-free condition on
the holes boundary 0Y,. In the same way, the second integral vanishes too, according to the equilibrium
equation of the P); problem.

5.1.2. Constitutive relations
After obtaining the equilibrium equations of the P! = problem, we focus now our attention on the
constitutive stress—strain relations of B} .

Grouping the ‘effective’ (i.e. nonequal to zero) first order macroscopic beam stresses in a vector, the
constitutive relations of the P! problem can be defined as:

N'(z5) dsits(z3)
M]i (23) _ PMhoml . 6331/:[3(23) (52)
M, (z3) 0331l (23)
M;(z3) 330 (z3)
and for later consistency of notations, relation (52) will be written in the form:
0:1 — E/Q/homl X él (53)

The components of the 4 x 4 matrix /"™ are defined as follows:
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A = (T, A = (= nTy,,)
&{gf?zml = < *y2fé3m>v %Z:«ml = < 7y21-%3m +y11’-;3m>

with 1 <m < 4. The quantities 7,,, obtained after solution of the Py cellular problem, have been defined in
Eq. (30).

Consequently, /"™ is the stretching stiffness, ./25™ and .7%™ the two bending stiffnesses, .o72™ the
twisting stiffness and the extra-diagonal quantities are the different coupling terms. Note that the effective
stiffness matrix ./"™" is determined from the solution of the first order cellular problem.

Following Sanchez-Hubert and Sanchez-Palencia (1992) for transversely nonhomogeneous rods or
Caillerie (1984) for periodic plates, it can be proved that .z"™" fulfills the symmetry conditions .«"™! =
/"™ and is positive definite.

nm

(54)

5.1.3. Boundary conditions

To complete the formulation of the Pl problem, it still remains to give the boundary conditions
corresponding to the both ends z; = 0, L. More precisely, one has to derive from the exact boundary
conditions expressed on the 2D end sections, Sj and S}, the prescribed data for the first order macroscopic
functions for z3 = 0 and z; = L.

As a first step, let us deal with the clamped condition on Sj. Writing the boundary conditions u{ = 0 at
each power of ¢ leads to:

u"(0,y) =0, m=>0 (55)

which yields to the following conditions on the first two terms of the asymptotic expansion:
i} (0) — 129" (0) = 0
43(0) =0 and < @(0)+y¢'(0) =0 Wy, (56)
i3(0) — ,0545(0) = 0
Thus, relations (56) can be identically satisfied provided that:
i,(0) = 8511,(0) = it3(0) = ¢'(0) = 0 (57)

Relation (57) hence corresponds to the displacement boundary conditions of the first order homogenized
problem P} .

Let us deal now with the other end section Sj.

Firstly, recalling that the initial 3D conditions are ¢%, = % (x;,x2), and taking into account the order of
magnitude of the prescribed stress data (6) yields:

{ 7, =0 02 = G311, )

=0 k>2 (58)
0y = a1(n,)2) 03, =0 B

However, the stresses 6! and 6° obtained from the cellular problems depend on the microscopic variables y,,
and are not able to satisfy arbitrary prescribed edge data 6;3(y1, ).

Therefore, a specific study is necessary in order to derive the appropriate boundary conditions on this
end section. This will be treated in Part II of this paper, in which a rigorous justification of Saint—Venant’s
principle is provided. The initial 3D boundary conditions are thus written as:

& & =& &
fsz 053 dS] = fsz o5 dS;

e e 59
[y s A e dS; = [ vies A dherd; >
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For the P}, problem, the boundary conditions have to be expressed as a function of the macroscopic
stresses {N', 72,M'}, and Eq. (59) leads to:

Nl(L) = fSL 6’33dSL, Tyz(L) = fSL 6’a3dSL (60)
MI(L) = [ —n.05dS;,, ML) =0

The proof of Eq. (60) is based on the property that the macroscopic stresses ¢! and 72, which are obtained
following an average process over the period Y, are also equal to the resultant beam forces on the right side
of the period. Hence the boundary conditions (60), assuming that the structure is constituted of a whole
number of periods. The relations (60) have been proposed in Cimetiere et al. (1988), and Trabucho and
Viano (1996).

Remark 5.3. It can be seen in Eq. (60) that there is no torque applied to the end-section for the P}
problem. This result follows directly from the assumption G%;(x;,x2) = & - G,3(y1,)2), which produces a
torque at the second order. Indeed, this last assumption has been made in order to lead to a zero first order
shearing force at the beam end, which is compatible with the result 7! = 0. However, this assumption might
be relaxed and one might consider a distribution of ¢%,, such that the resultant shearing force remains zero
but now with a nonzero resultant torque, so that M} # 0.

5.1.4. Summary
To summarize, the first order homogenized problem, P!, consists in finding the macroscopic stresses
{N',72,M'} and the four macroscopic displacements {i, a1, ¢'} such that:

BN+ (f3) + (€3)oy, = O
a3To<2 + () + <g1>aYh =0
=T + 0sMy + (n.f3) + (1:83)ay, = 0

OM! = 0
N(z;) 0t (z3)
M (z3) /hon 033 (z3) (61)
M, (z3) L 031l (z3)
M (z) 03! (23)
i(0) = 0511(0) = i13(0) = ¢'(0) = 0

NYL) =[5 633dSs, THL) =[5, 5:3dS,
M(L) = [ —1.633dS,, M5(L) =0

Due to the positive-definiteness of /"™ it can be proved that the problem (61) is well posed.

The P!, problem (61) generalizes and justifies the Euler-Bernoulli-Navier’s beam model, initially
proposed for homogeneous isotropic rods. In the case of periodic heterogeneity, a coupled stretching—
bending—torsion model is generally obtained. Its mathematical justification, using convergence results, can
be found in Kolpakov (1991).

It must be noticed that the equilibrium equation for the torque with the boundary condition at the end
z3 = L leads to M) (z3) = 0. Thus, if the torsion is not coupled with stretching or bending, ¢'(z;) = 0 due to
the boundary condition at z3 = 0.

Note also that the P! problem is a 1D beam problem that can easily be solved analytically. Only the
construction of the constitutive matrix ./ requires generally a numerical solution of the cellular
problem PY,, posed on the period Y.
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5.1.5. Treatment of the equilibrium equation of the P!, problem

Since the relations between the macroscopic quantities 6! and é e are established, let us now come back to
the P, cellular problem. As already explained in Section 4.4, one > has to take into account the compatibility
conditions when solving this problem, and the way of proceeding will be presented here.

Expressing the fictive volume force involved in P, in terms of the quantities 63é;, p € [1,4], the equi-

librium equation (31) (first equation) yields:
divy6” + 75, (¥)0:6,(z3)ei + fre3 = 0 (62)

cel

Furthermore, recalling that .«7™™! is positive definite, the stress—strain relation (53) can be written as:

63é1<23) _ yhoml . 630,:1 (Z3> (63)

where "™ denotes the inverse matrix of .z™™!
As proved in Section 5.1.1, the compatibility conditions for the PL;, problem reduce to Eq. (50) (first and
fourth equation). Inserting them into Eq. (63), we get:

036,(23) = =S ™ ((f3) +(g3)ay,) + S5 0sM] (z3) + S 5™ 0sMy (23) (64)
As a consequence, the equilibrium equation (62) has to be written as:

dj,vy 0_2 +f3e3 _ lep( )¢110n11(<f3> <g3>ay,,)en 4 Tﬁp( ){ gphoml %121}(?);11 4 yhoml 52ihom]}a e el — 0 (65)
with summation on the repeated indices, i € [1,3] and (p,m) € [1,4]".

Remark 5.4. The relation (65) gives the exact definition of the functions h1, hz, h3, introduced in Eq. (34) in
Section 4.4. Thus, it is obvious that hy(f3) = ,3[)( )yh"ml(ﬁ)e,, h3(g3) ,3p( )yh°m1<g3>ayhe,- and that
h, is given by the last terms of Eq. (65). -

In the case of a constitutive law .«#™™ without any coupling, the relation (65) can be simplified in the
following manner:

divyo” + fies — 7 (V) (™) ((3) + (€3)ey, & + i (¥)Dssaiiy (23)e5 = O (66)

5.2. Formulation of the kth homogenized problem Pf
5.2.1. Equilibrium equations

In the preceding section, it has been shown how to derive the first order homogenized problem P! . By
applying exactly the same method for each order £ > 1, one obtains the formulation of the higher-order
homogenized problems, PF

hom*
Hence the equilibrium equations of the Pt problems:

ON* + (f3) + (g5 oy, =0 (67)
BT+ () + (8 ey, =0 (68)
—T = My + (af3) + (485 ey, =0 (69)

OsMy + (i fy —ff) + g™ — gy, =0 (70)
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with

=
Py
N
w
~—
Il

(0%), T, (@) = (o33")

k k k k k (71)
M (z3) = (—=0%), M;(z3) = (=073 +110%3))

N¥, M" and M% correspond respectively to the macroscopic axial force, bending moments and twisting
moment of order k, while T5*! represent the macroscopic shearing forces of order (k + 1). We recall that the
prescribed volume force f‘ and surface force gf! satisfy assumptions (6).

5.2.2. Constitutive relations

Let us now study the macroscopic stress—strain relation of order k. We have seen in Eq. (43) that the
stress field 6%, solution of the Pk;' problem, is a linear function of the kth order macroscopic strain é*, the
first-gradient of the (k — 1)th order macroscopic strain (i.e. 63e ", and so on until the (k — 1)th- gradrent of
the first order macroscopic strain (i.e. &~ lel) Therefore, the macroscopic stress—strain relation at any order

k with k > 1 can be written as:

, 2k 2k—1 2k—2 —1z1 ,
o_k _ UQ{homl . é _’_%homZ . aSe _"_UQ{homS . 6336 4. —i-&{homk . alg le +6kpart

72
with 6" (z3) =" {N*, M{, M5, My} "

where strain vectors é” vanish when p<0, and where &' denotes the partial derivative (37! /dz571).

The kth order stress vector o' part CONtains the beam forces deduced from the stress state tkpm, 1.e. the
particular solution of the well- posed Pk, ! problem. This solution is obtained considering as data the volume
and surface forces involved in the current problem if any, as Well as the derivatives of the particular so-
lutions obtained at the preceding orders, grad S (a0 pdn) and leZ3( - pm) The 4 x 4 matrix /"™ has al-
ready been defined in Eq. (54). In a similar ‘way, the components of the 4 x 4 matrix ;z/ho'“ K are deduced
from the four elementary stress solutions of the (k — 1)th order cellular problem, namely £, t¥ and /7
grouped in t*. We recall that these stress tensors correspond to the solution of P! when the components of
the (k — 1)th gradient of é e are respectively considered as data, i.e. o4ii(z3), 05"'40(z3), and &%¢'(z3). Thus,

/" F s defined as:

ﬂhom g <T§3m> %hom g < le33m>

1m 2m
hom k hom &
%3”1 < y2133m> S%étm < yzfl_’am + N T23m>

Contrary to the first order effective stiffness matrix /"™, the higher-order stress—strain matrices .o7"™ ¥,
k > 2, are not necessarily symmetric or positive definite tensors. Especially, the second order one, .o7"°™2,
appears to be antisymmetric in 3D periodic media and even equal to zero following certain symmetry
properties of the period Y (Boutin, 1996; Triantafyllidis and Bardenhagen, 1996).

(73)

Remark 5.5. Solving the kth order homogenized problem P . implies that the lower-order macroscopic
problems have already been solved. Therefore, when considering the P} problem, the macroscopic strains
el, el ék are known and so are their successive gradients. Therefore the only unknown strain field in the
rrght hand side of relation (72) is the kth order strain vector e All the other terms constitute data for the
P} problem and can be considered as fictive initial stress states for the current macroscopic problem.
As a matter of fact, following the method presented in Boutin (1996), the first equilibrium equation (67)

of the P problem may be written as:

a}(&{homl fk)__(f3> <k+l>aYh_a3(&/tll:1m2 63’]( 1_’_%hom3 a%ek 2+ ) with 1<m<4

Im

(74)
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Writing all the equilibrium equations of Pf  in a similar way shows that this problem may be regarded as
the coupled stretching—bending—torsion model of Section 5.1.4, the higher-order effects arising under the
form of fictive volume loadings. It becomes also clear that the displacement unknowns of the P} problem
are the four macroscopic quantities {a*~!, 7, p*}.

5.2.3. Boundary conditions

To complete the formulation of the P problem, one must add to equilibrium equations (67)~(70) and
constitutive relations (72) the boundary conditions which have to be expressed on the displacements
{@5=1,dk, ¢*} for z; = 0 on one hand, and on the kth order macroscopic stresses {N*, 75!, M*} for z; = L
on the other hand.

These conditions, which are obtained from the initial 3D conditions on the two end sections S, S;, are
given in Egs. (55) and (58). Since we are interested in the Pt problem with & > 2, it can be seen from Egs.
(42) and (43) that it is impossible to fulfill these conditions exactly, so that boundary layers arise at the two
ends of the beam. This is a classical problem in asymptotic analysis of slender structures. In Part IT of this
paper, a method is proposed to derive the macroscopic boundary conditions at each order, so that well-
posed P} problems are obtained.

6. Summary

Let us summarize here the results provided by the formal asymptotic method. The solution in series of
the first k cellular problems, P} to P!, leads to the determination of the y;-periodic displacement fields
{1(y), ..., %*(y)}, as well as the associated periodic stress fields {t*f, 1/ /T}.

Then, following the average process given in Eq. (73), the first k effective matrices /™™ can be cal-
culated.

Treating in parallel the first k macroscopic problems, Pl to Pt . leads to the macroscopic parts of the
asymptotic expansions (42) and (43). Especially, the solution of the homogenized problems up to the kth
order, P}, gives the macroscopic axial displacement #;(z3) and the macroscopic torsion rotation ¢”(z;) up
to order k, as well as the macroscopic deflections #(z3) up to order (k — 1).

Thus, after having solved in series the cellular and the homogenized problems, one obtains from Egs.
(42) and (43), both local and global information on the solutions u’, ¢° of the initial problem. Particularly,

the macroscopic description of the displacements of the structure is given by:

(
i3 (z3) = iiy(z3) + edd(z3) + - - (75)

7. Concluding remarks

In this paper, it is shown that the asymptotic expansion method provides a rigorous and systematic way
to derive the overall response of a periodic heterogeneous beam. Especially, the macroscopic description of
the displacement field is given by °, defined as:
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¢ 1 )
E;(z3,z) = 90(2372) + et (23,2) + 329 (2372) 4. (76)

so that the components of §* are given by:

i (z3,y) = th(z3) — £20(z3)
i5(23,y) = ta(z3) + £019(23) (77)
l’ig (233 Z) = 8’23 (23) - 8yxa3ﬁoc(23)

with #;(z3) and @(z3) defined in Eq. (75).

The determination of the global field 4* may be achieved through a rational calculation of the successive
terms of the interior expansions. Thus it is necessary to solve in series several 3D microscopic problems as
well as 1D homogenized problems to find §° up to a certain desired order. The cellular problems allow us to
characterize the beam response at the period scale, under different macroscopic loadings corresponding to
macroscopic strains and their derivatives. Thus the effective beam behavior is obtained.

Nevertheless, it should be more judicious to define one homogenized problem which would enable us the
derivation in a single step of W up to the desired order. To this end, let us derive from the successive
homogenized problems P} the 1D equations involving the unknowns #;(z3) and ¢(z3) of W’".

Introducing the field §° into the expansion (42), we see that the displacement field solution of the initial
problem (3) can be written as:

Wz y) = 6 (o y) +ex'(y) - 608) + P22() - 0:6(8) + £%°(y) - 0b(8) + - + e with

é(i") = él + séz + -+ =" {5113, sy, 03302, D3¢0} and Wy = & u part + € uparl + - (78)
In the same way, Eq. (43) can be written as follows:
6" =et' - €(0) + 777 - 036(0°) + &' - 033€(0°) + -+ + Gpane (79)
Moreover, the expansion of the macroscopic beam stresses ¢° is defined by:
é£:é1+gé2+... (80)
and one has for the transverse shearing forces:
TE=T2+el) + - (81)

Thus, from Eq. (72) and from the addition of the equilibrium equations at each order, the macroscopic
fields 4, 6" and T are found to satisfy:

O3N* + (f3) + (g3)ay, = 0
03T + (fo) + (€u)oy, = 0

82
—T¢ — BM; + (yufs) + (1:83)ay, = 0 ()
O3 M5 + (v1f2 — mfi) + (18 — 1281)oy, = 0
6" = YN (z3), Mi(z3), Mi(z3), M¥(z3)}
— ghoml '( )_i_qu{homZ d e( )—|—8 ofhom3 . § 36( )_|_ e +o:part (83)

It is interesting to note that the macroscopic stress—strain relation (83) contains strain gradients up to
infinite order. As a consequence, the macroscopic description obtained when taking into account higher-
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order terms can be regarded as a higher-order gradient theory. This result was already pointed out in
Gambin and Kroner (1989) in the case of 3D elastic periodic media. Indeed, for such problems, the asym-
ptotic expansion method including higher-order terms brings out the contribution of nonlocal terms under
the form of the successive strain gradients, exactly as in Eq. (83).

Furthermore, if we restrict the study to the first three terms of the expansion of ¢°, then the stress—strain
relation (83) appears to generalize the well-known second gradient theory. Moreover if .«7"™* = 0 (which is
obtained when the period Y* presents certain elastic symmetries), we recover exactly the latter theory. This
comparison between the higher order theory derived from the asymptotic expansion method and the second
gradient theory is widely discussed in (Boutin, 1996) for 3D periodic media.

Another interesting point of view is to draw a parallel between the global model given by Egs. (82) and
(83) and refined beam theories, i.e. more sophisticated 1D beam theories than Euler—Bernoulli’s one. In that
way, in the case of homogeneous isotropic rods, Timoshenko’s model can be recovered and thus justified
via the asymptotic expansion method. This justification is given in Fan and Widera (1990) or Trabucho and
Viano (1996), where a generalization of Timoshenko’s theory is also established for the isotropic nonho-
mogeneous case. Let us outline here the way of proceeding to recover Timoshenko’s theory from the
general asymptotic model Eqs. (82) and (83). To this end, we consider the case of bending of a homoge-
neous isotropic rod in one of its principle planes (e; — e3), by the external forces (f{,0,0) and (gf,0,0)
verifying (6), and with a clamping condition at the both ends Sg, S?. Our aim is to derive the second order
model associated to the approximation of the expansions °, 6° up to the second nonzero term. The first two
effective terms of the macroscopic beam forces are found to be ¢ = o- + 9203 and from Eq. (82),

%(N' +&2N%) =0
63(T12+82T14)+fsf1dS+faSg1dy:0 (84)
(T} +&T}) + 0s(M{ + &M7) =0

since, for the beam under consideration here, the operators () and (-),, can be reduced to [;-dS and
Jss -dy, where S and 0S stand for the scaled beam cross-section and its lateral boundary respectively.

Considering moreover the case where the bending does not give rise to either torsion or tension effects
(symmetric bending without any coupling), and given that .#"™ is zero for a homogeneous beam, the
stress—strain relation (83) leads to:

M1 = /5™ 030l = EI 633ﬁ?
homl hom3 A4 ~ (85)
= o/ 3™ Ogauit + /55" Ol
with I; = [{ y1dS and where E denotes the Young’s modulus.
Consequently, the equilibrium equations (84) (second and third equations) yield:
MY + &) + &l 5™ (i) — / f1ds — / g1dy=0 (86)
s as

Moreover, from the first-order homogenized problem, the deflection @) is the solution of the differential
equation sz/h"ml 03(u)) + [5/1dS + [.5g1dy = 0, so that Eq. (86) can be written under the form:

L7250 6;‘12%8+82&/§§m3(&{‘2’§m1)16?(/fld5+/ g d«;) f/flde/ g1dy=0 (87)
N as N as

with @3* = @ + &3,
The relation (87) is found to be exactly of the form of the differential equation for Timoshenko’s beam
theory (u] stands for the beam deflection):
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EIL 3%l + (kGS)'El 6§</f1 dS+/ g dy> —/f, dS—/ gidy=0 (88)
S as S oS

where k denotes the shear correction factor introduced by Timoshenko.

Therefore, the comparison between Eqs. (87) and (88) enables us the definition of a shear coefficient k
from .o7%™ and &2.o/5™ (which corresponds to the descaled effective behavior). Nevertheless, it must be
noticed that several terms in the asymptotic expansion (42) of the complete deflection u’(zs, y,) have to be
neglected in order that Eq. (87) reduces to Timoshenko’s theory. Especially, Poisson’s effects as well as
geometrical torsional effects are neglected. The second order model (82) and (83) thus incorporates 3D
effects which are not taken into account in the classical Timoshenko theory.

Generally speaking, the asymptotic expansion method has the advantage of taking into account, in a
consistent and systematic way, nonclassical effects such as cross-sectional warping, as well as transverse
shear and normal stresses and strains. This is a major difference from existing higher-order beam theories
(see e.g. Kosmatka (1993), Reddy et al. (1997), Soldatos and Watson (1997) and references herein) which
are based on a priori assumptions regarding stress and displacement variations. These theories are found to
capture only a part of the correction due to higher-order effects, as it was proved previously for the second
order Timoshenko theory.

Moreover, since approximate boundary conditions have to be considered, edge effects are an important
source of errors in refined engineering theory (Duva and Simmonds, 1991). On the contrary, the asymptotic
expansion method enables us to obtain an outer solution which is valid far from the edges (see Part II of
this paper).
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